Monatshefte für Chemie 114, 829-838 (1983)

Crystal Structures of Cu(II) Complexes of Pyridine-2,6-dithiocarbomethylamide

Christoph Kratky^{a, *}, Christian Jorde^a, and Alois Popitsch^b

^a Institut für physikalische Chemie, Universität Graz, A-8010 Graz, Österreich

^b Institut für anorganische Chemie, Universität Graz, A-8010 Graz, Österreich

(Received 23 February 1983. Accepted 3 March 1983)

The crystal structures of three copper(II) complexes of pyridine-2,6dithiocarbomethylamide (PDTA) were determined by X-ray crystallographic methods. The structure of the bromide $CuPDTABr_2 \cdot H_2O(2)$ is isomorphous to the known crystal structure of the chloride $CuPDTACl_2 \cdot H_2O(1)$. The iodide $CuPDTAI_2 \cdot DMF(3)$ is non-isomorphous to the other two halogenides, but shows a very similar square-pyramidal 5-coordination of the copper atom. In contrast to the halogenides, the crystal structure of the nitrate $CuPDTA(H_2O)_2 \cdot (NO_3)_2$ (4) shows a square planar metal coordination by the PDTA ligand and one water molecule. If one includes the second water molecule and one oxygen atom of a nitrate ion, the metal coordination becomes distorted octahedral.

(Keywords: Pyridine-2,6-dithiocarbomethylamide copper(II) bromide and iodide, crystal structure; Pyridine-2,6-dithiocarbomethylamide copper(II) nitrate, crystal structure)

Kristallstrukturen von Cu(II)-Komplexen von Pyridin-2,6-dithiocarbomethylamid

Die Kristallstrukturen von drei Cu(II)-Komplexen des Pyridin-2,6-dithiocarbomethylamids (PDTA) wurden mit der Methode der Röntgenstrukturanalyse bestimmt. Die Struktur des Bromids Cu $PDTABr_2 \cdot H_2O$ (2) ist isomorph mit der bereits bekannten Kristallstruktur des Chlorids Cu $PDTACl_2 \cdot H_2O$ (1). Das Jodid Cu $PDTAI_2 \cdot DMF$ (3) zeigt — bei nicht isomorpher Kristallstruktur — eine den beiden anderen Halogeniden sehr ähnliche quadratisch-pyramidale 5-Koordination des Cu(II). Demgegenüber beobachtet man in der Kristallstruktur des Nitrats Cu $PDTA(H_2O)_2 \cdot (NO_3)_2$ (4) eine quadratisch planare Metallkoordination durch den PDTA-Liganden und ein Wassermolekül. Zählt man das zweite Wassermolekül und ein Sauerstoffatom eines Nitrations der Metallkoordination zu, so erhält man eine stark verzerrt-oktaedrische Koordination.

56 Monatshefte für Chemie, Vol. 114/8-9

Introduction

The crystal structure of pyridine-2,6-dithio-carbomethylamidecopper(II) chloride $CuPDTACl_2 \cdot H_2O$ **1** was recently reported¹, together with spectroscopic data for other members of the $CuPDTA-X_2$ series. These data indicated considerable structural similarity between all compounds of the $Cu-PDTA-X_2$ type. We now report the crystal structures of $CuPDTABr_2 \cdot H_2O$ **2**, $CuPDTAI_2 \cdot DMF$ **3** and CuPDTA $(H_2O)_2 \cdot (NO_3)_2$ **4**.

Upon heating, crystals of 4 loose two molecules of water at about 100 °C⁷, leading to a complex with the nitrate ions coordinated directly to copper. While a stereochemistry similar to the $CuPDTACl_2$ crystal structure was predicted for the water free nitrate complex, no definite prediction about compound 4 was ventured on the basis of the IR spectrum. The low temperature required for the removal of water from 2 (to be compared to 177 °C required to remove 1 molecule of non-coordinated water from crystals of 1) would tend to argue in favour of weak or no coordination of water to Cu(II).

Experimental

All three structures were determined with the help of a modified STOE 4-circle diffractometer (MoK-radiation, graphite monochromator, $\lambda = 0.71069$ Å). Table 1 lists relevant experimental conditions and data for the three structures. Cell dimensions were determined by least-squares from the setting angles of 15-50 reflections, whose positions had been obtained from a peak search with subsequent reflection centering. Intensity data for all independent reflections within $2\theta \leq 50^{\circ}$ (sin $\theta/\lambda \leq 0.595$) were collected in the w/θ scan mode with fixed scan width and variable scan speed.

During data collection, several standard reflections were periodically monitored. While the standard intensities remained constant within $\pm 2\%$ for 2 and 3, they showed a decrease by about 20% for compound 4.

Data reduction involved a correction for the standard intensity decrease (for compound $\mathbf{3}$) and the usual derivation of F-values from raw intensities (LP-correction, no absorption correction).

Table 1. Summary of	`experimental	conditions	and	crystal	data	for the	structu	res c	γf
		2, 3 and 4							

Compound	2	<u>3</u>	4
chemical composition	^C 9 ^H 11 ^N 3 ^S 2 ^{CuBr} 2. H ₂ 0	^C 9 ^H 11 ^N 3 ^S 2 ^{Cu} I2. ^C 3 ^H 7 ^{NO}	^C 9 ^H 11 ^N 3 ^S 2 ^{Cu} (H ₂ ^O) ₂ . (NO ₃) ₂
space group	P2 ₁ /n	P2 ₁ /a	Cc
cell dimensions $a(\stackrel{A}{A})$ b($\stackrel{A}{A})$ c($\stackrel{A}{A})$ $\beta(\stackrel{O}{})$	9.292(2) 9.153(2) 17.929(6) 102.08 (1)	8.257 (3) 25.664 (11) 9.432 (4) 101.93 (2)	8.383(1) 11.024(1) 18.036(3) 93.85(1)
z	4	4	4
$d_{m} (d_{x}) (gcm^{-3})^{(a)}$	2.122 (2.08)	2.099 (2.091)	1.785 (1.793)
μ (MoK _a) (cm ⁻¹)	75	45.6	16.6
scan width (°) ^{b)}	1.5	1.8	1.2
Nr. of independent reflections	2615	3459	1572
Nr. of significant ^{c)} reflections	1611	2547	1537
weighting system d) coefficients a/b	2.25 / 0.00112	1 / 0.00442	3.5 / 0.000068
Nr. of parameters ^{e)}	199	160	226
Nr. of observations ^{e)}	1607	2546	1532
R (R _W) e)	0.077 (0.070)	0.074 (0.082)	0.038 (0.044)
P_{max} (eA ⁻³) f)	0.6	1.7	0.6

a) observed (calculated) density ; observed density by flotation in $\text{CCl}_4/\text{CHBr}_3$

b) scan width for data collection (ω/θ scan)

c)
$$|F_0| > 3\sigma(F_0)$$

d)
$$w_i = a / (\sigma^2 (F_o) + bF_o^2)$$

d) $w_i = a/(\sigma^2(F_o) + bF_o^2)$ e) last refinement cycle

f) highest peak in final difference Fourier synthesis

Table 2. Fractional atomic coordinates and isotropic or equivalent isotropic tensor components ($\cdot 10^4$, U values in Å²) for the crystal structures of 2 (A), 3 (B) and 4 (C). The isotropic temperature factor has the form: $T = \exp(-8\pi^2 U \sin^2\theta/\lambda^2)$. For an isotropically refined atoms (see exp. section), the equivalent isotropic tensor components U eq were calculated as one third of the trace of the

832

orthogonalized Uij tensor. Standard deviations are in units of the last digit

	Ueq or U	352 4	460 30	537 34	364 8	438 70	372 32	379 32	278 27	302 13	351 15	21 882	283 13	374 15	421 16	367 76	400 19	486 18	0.00	45 D14	02 020	64 9A2	943 58		418 32	608 37	673 38	689 39	961 231	997 315	1253 401	773 362	727 321	838 332
	2/c	8818 fix	8405 3	9599 3	9591 5	1 2787	9131 3	6552 3	8010 3	8950 3	7228 4	8158 3	7318 4	7601 4	6735 4	6880 4	98 84 5	6377 5		5 0100	7120 4	6470 4	5973 3	- 0040	£ 9646	10200 3	9684 4	9029 3	8761 35	7920 29	10158 21	9545 59	8702 42	6081 37
o	¶∕1	3460 1	1460 5	2733 6	3815 2	3315 2	4925 6	3630 6	4167 5	4475 6	3730 6	4578 8	4205 6	5043 6	4692 7	5126 7	4876 8	3228 7		9 2201	8 10.1	1468 7	1693 8		6412 5	0642 5	6800 6	8798 6	1226 73	1872 84	2897 113	2627 99	5 5390 86	3875 89
	X/a	9508 fix	7714 7	10918 7	7555 2	11440 2	4811 7	10737 8	8140 6	6284 8	10255 9	6681 8	8814 8	5862 9	7647 8	6170 9	4403 11	12314 11		0323 3	6 1776	7728 8	5376 8		8492 7	8995 7	10712 7	8772 B	6864 76	7021 114	10892 162	12120 33	4336 100	10056 107
	Atom	CU	5	0-2	S-1	8-8	I-N	8-N	N-3	5	5	5	7	5	ŝ	6-0	5	6°-0			11 11-10	02-mit1	03-ni t 1	:	N -Dit2	01-mit2	02-mi t.2	03-ni t 2	HI-01	H2-01	HI-02	89-98 181-98	IN-EI	EN-H
	Ueq or U	402 B	479 6	588 7	495 21	476 20	485 30	469 28	321 23	481 36	314 27	368 30	351 29	351 28	511 36	514 37	641 46	591 41		652 46	719 34	536 33	763 52	753 52		1 335	798 265							
	2/c	6168 2	9001 7	4317 1	5918 4	6054 4	7611 12	7288 13	7157 10	7091 16	7000 13	7532 13	7477 13	8234 13	8180 15	8590 16	7077 19	5346 18		1559 20	787 14	1308 13	51 22	51 22		8050 115	8353 28							
£	۹∕۸	965 /	1228 0	1414 7	191 /	1814 7	-614 5	1655 5	544 4	-145 6	1311 5	46 5	765 5	-243 5	483 6	-26 6	-866 7	2096 6		3254 7	3634 5	2818 5	2721 8	2721 8		-913 37	1434 41							
X/a	X/a	1308 2	3472 1	2734	2558 5	-598 5	2235 16	-3207 16	-214 13	1628 19	-1864 15	11 021	-1579 16	-826.16	-2600 20	-8187 21	3672 24	-3600 22		4089 24	3894 18	4696 17	5316 27	5316 27		1895 141	-2961 133							
	Atom	CD	T	- Ri - 1	S-1	s-S	1N	2-2 N	8-N	5	84 0	5	1-0	6-6	30	5	8-0	6-9 C-8		CIS	018	NIS	C2S	C3S		IN-H	H-NP	1						
	Ueg ar U	370 10	454 9	503 0	488 2.3	506 22	417 69	399 68	341 62	325 72	287 69	344 77	332 7.3	373 75	367 81	401 81	847 111	554 102	580 69			875 6.3.3	627 456	302 329	1783 911									
	2/c	. 2017	PRD9 1	4810 1	30.84	4633 2	3302 7	4178 7	3875 6	3613 8	4200 7	3624 7	3028 7	3392 8	3754 A	3484 8	11 5805	4447 11	2308 7			3058 88	3729 53	2579 60	2100 124									
A	4/k	1001	v 1001	1 1001	1000	4 0500 7 VG6	1871 11	-2562 12		1640 14	-1326 14	149 15	-1334 14	-1092 16	-2682 15		01 1004	-2736 17	397 12			1010 197	-8147 135	899 116	187 242									
	X/a	5	7 800	7 106	2 0100	* 80%6	-4805 12	9810 17	10 10	71 044	11 2541	71 FUD1-	21 1001	-2804 15	21 102	21 100	C/ 0512-	4114 15	3954 11			LEOR 1 CD	1844 135	3252 105	011 1000	001 000W								
	Atom	1100	- 10 10	1-310		1.0	N-1	-	2		1		33	52	33		j	5 2	, , ,	5		т		- H										

C. Kratky et al.:

The structures of **3** and **4** were solved by direct methods and subsequent F_0 and $F_0 - F_c$ Fourier syntheses. Structure **2** was fount to be isomorphous to the $CuPDTACl_2 \cdot H_2O$ (1) crystal structure, whose coordinates were therefore used as a starting point. The conditions of the least-squares refinement were chosen with regard to the size and quality of the three data sets and differed slightly between the three structures:

- Compound 2: all non-hydrogen atoms refined with anisotropic temperature factors; the 4 strongest reflections were excluded due to suspected extinction.
- Compound 3: only Cu, I and S refined with anisotropic temperature factors, all other atoms isotropic.
- Compound 4: all carbon atoms refined with isotropic temperature factors, N, O, S and Cu with anisotropic temperature factors. An empirical extinction correction (Program SHELX³) was applied, and the 5 strongest reflections were excluded.

For all three structures, hydrogen atoms were treated alike: an individual isotropic temperature factor was refined for each H-atom, methyl groups were refined as rigid groups and the other H-atom positions were subjected to a bond-length constraint (C—H 1.08, N—H 1.05, O—H 1.00 Å).

Atomic coordinates and isotropic tensor components are given in Table 2 A-C. Hydrogen atom coordinates are not given, with the exception of protons with potential involvement in hydrogen bonds. The following computer programs were used: MULTAN², SHELX³, XRAY⁴, PLUTO⁵ (some programs in locally modified versions).

Results and Discussion

Fig. 1 shows projections of the $CuPDTAX_2$ moieties into the PDTA plane for the structures of **3** and **4**; packing diagrams for these two structures are given in Fig. 2. Intramolecular bond-lengths and -angles for all three structures are presented in Fig. 3.

The crystal structure of the bromide 2 is isomorphous to the previously reported structure of the chloride 1^1 ; both structures consist of pairs of antiparallel molecules, which are crosslinked by hydrogen bonds involving the solvated water molecule. We refrain from giving a projection of the CuPDTABr₂ molecy or a packing diagram for the crystal structure of 2, and refer to the detailed description of structure 1.

As far as the stereochemistry of the $CuPDTAX_2$ complex is concerned (see below) the crystal structure of the iodide **3** is similar to the other two halogenides **1** and **2** (Fig. 1*A*). However, the solvated *DMF* molecule in the crystals of **3** offers less hydrogen bonding capacity than the water molecule in **1** and **2**, leading to only one significant intermolecular H-bond in structure **3** [between H2 and the carbonyl oxygen O1S at -x + 1/2, y - 1/2, -z + 1; d = 1.74 (10) Å].

Fig. 1. Projection of the CuPDTAX₂ moiety into the molecular plane. Atoms are represented with their observed temperature ellipsoids (50% probability), with the exception of hydrogen atoms, which were drawn as spheres with a radius of 0.1 Å. A: X = I (compound 3); B: $X = H_2O$ (compound 4)

Although Fig. 1 B might suggest a large degree of similarity in the Cu-coordination between structure 4 and the halogenides 1, 2 and 3, there are significant differences to be discussed in the next paragraph. The packing of structure 4 (Fig. 2B) appears to be dominated by numerous hydrogen bonds involving the amide protons, the water molecules and the nitrate ions: H—N1...O1 (-1/2 + x, 1/2 + y, z), 1.85 (9) Å; H—N2...O1—nit2 (x, 1—y, -1/2 + z), 1.89 (7) Å; H1—O1...O2—nit2 (-1/2 + x, -1/2 + y, z), 1.88 (7) Å; H2—O1...O1—nit1 (x, y, z), 1.71 (7) Å; H1—O2...O3—nit1 (1/2 + x, 1/2 - y, 1/2 + z), 1.63 (7) Å; H2—O2...O3—nit2 (1/2 + x, -1/2 + y, z), 1.95 (8) Å.

Α

В

Fig. 2. Stereoscopic packing diagrams for the crystal structures of 3 (A) and 4 (B)

Fig. 3. Bond lengths and bond angles for the crystal structures of 2 (A), 3 (B) and 4 (C). Standard deviations (from the least squares refinement) are as follows: Compound 4: Cu—O: 0.006; Cu—S: 0.002; Cu—N: 0.005; C—S: 0.007; C—C, C—N: 0.01 Å; angles: 0.3-0.7°. For compounds 2 and 3, the standard deviations are about twice as large; Cu—Br, Cu—I: 0.002 Å

Coordination Around Cu(II)

In each of the three halogenide structures, a square pyramidal coordination of the copper atom by the two thioamide sulfur atoms, the pyridine nitrogen atom and the two halogenide atoms is observed. The distance from the copper to the equatorial halogenide atom X_2 is about 0.35 Å shorter than the distance to the apical halogenide X_1 . The copper atom is displaced by about 0.3 Å from the base plane (formed by X, S 1, S 2 and N 3) towards X_1 (1, 0.28; 2, 0.27; 3, 0.31 Å).

Structure 4, which has two water molecules instead of the halogenide atoms $(X = H_2O)$ displays a metal coordination which appears similar to the 5-coordination of the halogenides (Fig. 1 *B*). However, the difference in the coordination distance between apical and equatorial water molecule is more than twice as large (0.8 Å), and the displacement of the Cu-atom from the plane of the four equatorial ligand atoms is practically zero (0.02 Å). The metal coordination should therefore be more appropriately termed square planar or—if the nearest nitrate oxygen atom is included (Cu...O2—nit 2, 3.05 Å)—distorted octahedral.

Both types of metal coordination are quite common for Cu(II) complexes, which have been classified in terms of the tetragonal distortion T^6 . T should be smallest for the square planar complex 4. This agrees with the observation, that the equatorial bonds are slightly longer for the halogenides than for the hydrate: < Cu ... S > (1, 2, 3), 2.286; < Cu ... S > (4), 2.279; < Cu ... N > (1, 2, 3), 2.007; Cu ... N (4), 1.96 Å. A similar conclusion is deductible from the IR band positions.

Intramolecular bond-lengths and -angles (Fig. 3) agree between the three structures and show few significant differences to the structures of the free ligand⁸ and its nickel complex⁹. The only exceptions are the thioamide bonds, where a lengthening of C=S and a shortening of C-N was noted¹ for the coordination to Cu(II).

References

- ¹ Kratky C., Jorde C., Popitsch A., Monatsh. Chem. 113, 933 (1982).
- ² Germain G., Main P., Woolfson M. M., Acta Cryst. A 27, 368 (1971).
- ³ Sheldrick G. M., SHELX 76, a program for crystal structure determination. University of Cambridge, England.
- ⁴ Stewart G. M., The XRAY system version of 1976. TR-466, CSS, University of Maryland, USA.
- ⁵ Motherwell S., Program PLUTO, University of Cambridge, England.
- ⁶ Hathaway B. J., Billing D. E., Coord. Chem. Rev. 5, 143 (1970); Hathaway B. J., Hodgson P. G., J. Inorg. Nucl. Chem. 35, 4071 (1973).

C. Kratky et al.: Crystal Structures of Cu(II) Complexes 838

- ⁷ Popitsch A., Czaputa R., Monatsh. Chem., in press.
 ⁸ Popitsch A., Gagliardi E., Schurz J., Kratky C., Monatsh. Chem. 112, 537 (1981).
- ⁹ Kratky C., Schurz J., Gagliardi E., Popitsch A., Monatsh. Chem. 112, 721 (1981).